Troglodyte: How farmers were punished for using a shovel

“Whether or not the cases had any actual merit, the farmers could not afford lawyers. They always caved in and paid a “licensing fee” of $10-$100 (real money in 1875).”

The purpose of Project Troglodyte is to hunt for bad patents and to show what went wrong. For more information, please see the web page.

HOW FARMERS WERE PUNISHED FOR USING A SHOVEL

[Edited Appendix 2 on 30.8.2012 to suggest a more realistic cost estimate.]

The dystopia described in Trolling on the human rights  is no dystopia. I suggested there that patent trolls (companies owning essentially worthless patents for the sole purpose of extracting licensing fees) could start demanding such “license fees” for basic human rights such as clean water or education.

It turns out this has happened. It happened in the 1870’s, but similar patent mechanics apply today. Weaknesses in 1870’s patent law allowed ruthless operators to collect “license fees” from ordinary farmers who happened to be using shovels. The case is described by Gerard Magliocca (Blackberries and barnyards: Patent trolls and the perils of Innovation, Notre Dame Law Review, June 2007). [See Appendix 1 for more details].

HOW DID THE 1870s SHARKS OPERATE? 

The 1870 Patent Act loosened the criteria for filing patents. Pure design elements could now be patented, rather than functional elements. In other words, tiny (even ornamental) changes to basic designs could be patented and the patents enforced, and it was extremely difficult to know if a given product actually infringed the patent. Magliocca summarized the problem as being that “almost any farm tool could be classified as a design”.

This was quickly abused by patent sharks (as they were called then). By patenting tiny changes to essential equipment such as shovels, they could demand royalties, targeting individual farmers. Whether or not the cases had any actual merit, the farmers could not afford lawyers. They always caved in and paid a “licensing fee” of $10-$100 (real money in 1875). According to this site, ten dollars would have been a week’s salary for an urban fireman. In a  rural economy, this would have been a proportionately much larger sum of money.  Painful but not ruinous.

(I want to make a personal comment here. I do not consider patents as such to be the evil issue here. If someone uses significant money to develop, say, a truly new composite-material shovel that weighs a fraction of current shovels, they are entitled to protect it. It may not sound ethically nice, but at least it is not gaming the system, in the way that trolling is).

According to Magliocca, USPTO practices were changed during the late 1880’s so that pure design elements could no longer be patented. Shark activity was thus no longer profitable.

WHAT ALLOWS TROLLS TO THRIVE?

Magliocca sees direct parallels to today’s trolling situation, especially in software and business patents. He suggests three criteria that breed trolling behavior.

1. Substitution effect. It must be extremely difficult to find a substituting solution, either by bypassing the patents or by using a competing technology. Currently, software is dependent on multiple interacting modules, and redesigning one module can be too difficult to be realistic. On the other hand, in the 1870s, “there are only so many ways to design a shovel”. Once a patent had been granted, much anything could be alleged to infringe it. Since farmers needed shovels, they were open to attack.

2. Marginal improvements. When almost all patents look almost the same, it is difficult to know whether one is infringing or not. This is true of today’s software patents; it was true of design elements for shovels. When one has no prior way of actually knowing whether an infringement has taken place, going to court is a huge risk.

3. Cheap technology. Trolling only makes sense if it is very cheap to file and maintain patents, and owning just one critical patent can bring the targeted system to a halt. In the 1870’s the problems were due to the loose standards for patenting. Today, systems are highly integrated, and just one patent can block an entire system.  In both cases, a strong “portfolio” could be created by just owning one single patent.

Cheapness is also related to the ability to hold on to patents for a long time. In the 1870s, “inventors” could patent small design elements, and then allow the patents to stay inactive until they saw them actually being used.  Currently, this practice is discouraged by making maintaining a patent more expensive over time. However, Magliocca doubts whether the cost currently rises sharply enough.  See Appendix 2 for details.

COULD 1875 BE REPEATED IN 2015?

Patent weirdness today get the most press in areas which are, in my opinion, socially irrelevant. We could survive without pinch-and-zoom user interfaces on touchscreens. We could not survive without water. Could trolls start to interfere with, say, access to water?

I will focus on sensor systems needed to monitor and optimize irrigation. Such ensors are a crucial part of controlling irrigation and conserving water.  I will focus concretely on a patent which I have analyzed already (see Troglodyte: Cleantech 2). That patent is only one specific sample; there could be significantly worse ones.

1. Substitution effect. This might not seem like a severe risk, as a variety of sensor technologies that can be used.  However, patents in the core of data transmission protocols are difficult to bypass because of their very generality, and because a single patent on a small detail can block an entire complex system.  The Cleantech 2 patent certainly is in the category.

2. Marginal improvements. To exaggerate a little, all patents these days look alike. A small company won’t have the time or competence to estimate whether a case is valid. (Bizarrely, trying to do so could actually make things worse. If an infringement is judged to be “willful”, courts may triple the damages. In other words, if a company does try defend itself, in principle it risks being punished three times more severely.  It is a Catch-22). An average company confronted with the Cleantech 2 patent probably would have no idea what to do.

3. Cheap technology. Patenting is cheap compared to the possible profits (see Appendix 2). And the USPTO is in serious trouble with spurious patents. Companies can now file spurious patents in critical areas, and keep them quietly hidden away. The Cleantech 2 patent is a good example. It may (at least partly) be in force for the next twenty years. If someone during that time develops a good real-time system for optimizing irrigation using rain sensors, the patent could come to haunt them.

I truly don’t know if we could see a repeat of 1875. Magliocca’s criteria do seem to be satisfied. The magnitude of the risk is completely impossible to predict. It could lead to severe disruptions in the development of irrigation technologies; it could be a minor irritant that slightly raises licensing costs; or, nothing at all might happen.

However, the right time to start preparing for potential attacks is now, before litigation (or threat of litigation) has even begun. Whether anything can actually be done I do not know; but being unprepared is the worst possible option.

 

——————————————————————————————————-

APPENDIX 1: STATISTICS

It appears that Magliocca’s paper is the only major study of that case, and the subjective description is largely based on one historical paper from the 1940’s (however, the paper is backed by extensive legal references).  For the sake of general skepticism, I decided to see whether there are other sources that would support that description.

I made a Google Patents search for patent applications with the term “shovel” between 1860 and 1895 (Figure 1). There is indeed a dramatic peak after 1870, decreasing in the 1880’s. (I have no explanation for the secondary peak before 1890).

It is necessary to consider whether the growth could be due to general trends in patenting after 1875, rather than the specific shark effect. Figure 2 shows the number of patent applications, from USPTO statistics. There is more or less consistent growth throughout the same period. The peak in “shovel” applications is not related to any general growth of patent applications. The statistics are consistent with the shark hypothesis.

Figure 1: Number of patent applications with keyword “shovel”



Figure 2: Overall number of patent applications

 

——————————————————————————————————————


APPENDIX 2: HOW CHEAP IS PATENTING, ACTUALLY?

[Edit 30.8.2012: It was pointed out by an experienced reader that a more realistic cost for getting and maintaining a patent for 20 years is closer to 75 kUSD than 15 kUSD, if done properly.  I accept that the estimate below is unrealistically small. However, if a higher cost estimate is used, then part of my point is made stronger: doubling the lifetime of the patent only adds some 5-10% to the overall cost].

From the USPTO’s current fees, filing a patent costs in the ballpark of 1500 USD. If the patent is granted, an issue fee of about 1700 USD must be paid. There can be various hard-to-predict fees which may raise the cost considerably.

In order to maintain the patent, maintenance fees must be paid: 1100 USD at 4 years, 2900 USD at 8 years, and 4700 USD at 12 years. The patent is then valid for 20 years. (The prices can be halved for small entities such as individual inventors). The absolute minimum cost to maintain a patent for 20 years is in the ballpark of 12,000 USD. A practical estimate is at least 15,000 USD, including patent attorney fees.

Magliocca notes that the purpose of the maintenance fees is to make it sharply more expensive to maintain patents for long periods. However, he suggests the rise is not sharp enough. Indeed, given the the initial filing phase also includes requires the patent application to be written by a patent attorney (not cheap), a good ballpark estimate is that the patent has already cost at least 6000 USD by the time of the first renewal, and there are no significant attorney fees after that. A large part of the money has thus already been spent up front.

In practice, maintaining a patent for eleven years easily costs about 10,000 USD, while maintaining it for the whole twenty years costs only 5,000 USD more. This does seem like a no-brainer: if there is any potential, one might as well go the full twenty years.

Troglodyte: Cleantech 2

“As inventors ourselves, we think this was already trivial somewhere around the year 1900 (the invention of radio).”

The purpose of Project Troglodyte is to hunt for bad patents and to show what went wrong. For more information, please see the web page.

SYSTEMS AND METHODS FOR REMOTE IRRIGATION CONTROL

[Writers: Jakke Mäkelä and Niko Porjo]

On June 5, 2012, a patent was granted (US8193930) named  “Systems and methods for remote irrigation control”.  The patent holder can now claim to own the following invention: someone has a rain sensor standing in a field; that rain sensor sends rain data to someone over a wireless network; and that information is used to control water sprinklers.

If we were to summarize our understanding of the patent, we would say it consists of saying in a complex way: “Remove the wire and insert equipment to make a wireless connection”. As inventors ourselves, we think this was already trivial somewhere around the year 1900 (the invention of radio). In the Appendix, we try to show this in much more detail.

We take a clinically analytical perspective here. We might not personally like this patent, and we see potential risks in it, but it is entirely up to the patent owner what happens with it. As we pointed out in The Trolling Triad, not everything is a patent troll that is called a patent troll.

Disclaimer: we are NOT talking about legal issues. In the patent world, it is the claims that are argued about in court. We are interested in the technical descriptions, that is, the new information that society gained by granting the patent. After all, that is the whole tradeoff behind the patent system; in exchange for a temporary monopoly to the patent holder, society gets full disclosure of what was invented.

We see nothing new here, hence no benefit to society.

The main risk we see with this patent is the precedent. In the wrong hands, this patent is broad enough to cause problems to anyone dependent on irrigation.  The main group at risk are small US companies who design or manufacture systems for irrigation control. A Google search with “irrigation control company” quickly brings up such a list.

This patent is spurious enough that it really is difficult to work around.  There are two ways to achieve such a blanket: by being very good, or by being very vague.  The patent certainly does not fall into the category of “very good”.

The deadening effect of spurious patents on the software industry is well known (see EFF). If such practices start to flow into industries that deal with crucial services, such as irrigation or food production, it is a bad precedent.  Innovation in this area will slow, and prices will rise due to the additional licensing costs. This can have a high societal impact in the long run.

 

 

TECHNICAL APPENDIX: IN-DEPTH ANALYSIS OF THE DESCRIPTION

The patent description is written around the figures and the dissection below follows this partition and may thus handle several paragraphs in one go. There is a short plain text summary of the patent text related to each figure, given in italics and followed by our comment. Each figure and its description will be analyzed and it will be shown that the description of the invention offers nothing new, in fact in terms of technology most of the content is positively ancient. It should be noted that many of the examples given as prior art fit more than one part of the description.
The technical field is described as follows “…remotely operated systems, and more particularly to a computerized system for monitoring, reporting on, and controlling remote systems by transferring information signals through a wide area network (WAN) and using software applications hosted on a connected server to appropriately process the information.”
Fig 1. Describes shortcomings of prior systems, the main message is that  wires are required to connect sensor actuators to controllers and further to more remote computers or humans running decision making algorithms and finally to power sources. —–   For example this Skylab Saturn IB Flight Manual describes how a range safety officer could use a wireless connection to trigger destruction of the vehicle based on part on telemetry readings received from the vehicle. Tracking stations forming a wireless network around the world were used to send and receive telemetry data.  —–  Radioisotope thermoelectric generators have been used to power both lighthouses and monitoring equipment on earth. In a less extreme example mobile phones have always been battery powered and since they include a microphone (sensor) and an actuator  (vibrating alert) they can be called a sensor actuator. Thus the problem of wired connections for data and power for remote units has been solved a long time ago by using wireless radio technologies.
Fig 2. According to the text fairly complex network can be constructed with wireless transceivers connecting the sensor actuators through local controllers to a network. Specific software can be run on different nodes, connections can be one way, wireless communications can be established through several nodes if they are in range and data can be gathered by and commands can be sent from computers on the network.  —–  Two abbreviations: GSM and SMS. A GSM network consists of back end infrastructure (computers, wires…) connected to base stations through either wired or in some cases wireless two way data network. Mobile devices are connected to the base stations by a radio frequency link. While in a digital system all information is transferred as digital data, the Short Message System offers an example where the originating data is something else than audio.   —–    Handheld radio transceivers or walkie-talkies have been around since at least WWII, the technical task of integrating one of these with a mobile phone and others with sensors to create a sub network of sensors is straightforward.  —– As mentioned in the description each node of a network can and usually does host application specific software, for example mobile devices with the “Nokia OS” have been sold in their billions.
Fig 3A. Describes for example a subset of functions of a mobile phone.  —– But very superficially.
Fig 3B. Describes for example a more restricted subset of functions of a mobile phone and mentions the emergency call function. —– But very superficially.
Fig 3C. Compared to 3A and 3B an actuator is added.  —– Using a radio transmitter such as a mobile phone or a walkie talkie to control an actuator is a trivial exercise and has been around since the 1960s in the form of RC toys.
Fig 3D. Describes how predetermined codes are coupled with sensor outputs and transmitted to appropriate network nodes.  —– This is a simplified example where a lookup table has only four alternate states. A vocoder offers the same function, information from the sensor (microphone) is coded to relatively few states that then sent over the network.
Fig 3E. Adds a GPS receiver.  —– Mobile phones have included GPS receivers since about 1999 but as will be discussed below aircraft altitude information has been transmitted in wireless networks long before that, replacing the altitude information source with a 3D location source is not inventive.
Fig 4. Describes a generic data processing unit with data connectivity and ability to take actions based on the data it receives. —– It is very generic and could for example represent a computer in a mobile base station.
Fig 5. Similarly to Fig 4 a very generic description of a Wide Area Network is given and it is mentioned that one of the local controllers can be attached to a WAN.  —–  A mobile base station might have a WAN connection and in many cases has a wired connection either over an IP network or for example a telephone network.
Fig 6. Is an application of some of the preceding ideas to a “utility meter monitoring system”.  —– It fails to include the idea of being able to cut the supply in case the bills are not paid. As general technologies for creating exactly this type of networks have been shown above to have existed for a long time this application is not new.
Fig 7. Is an application of the preceding description to automotive fault code transmission. A car with On Board Diagnostics connected to a transceiver for communication.  —– This is again a variation of telemetry. In Formula One these systems apparently surfaced in the early 1990s. As an example 2-way telemetry is mentioned casually in this June 1993 issue of Popular Mechanics. Data transmission from a pit computer through a telephone network using a modem would have been a trivial exercise.
Fig 8. Is an application of the preceding description to an irrigation system. —– It’s a wirelessly transmitting weather station and a remote controlled actuator in the same box while the decision algorithm runs on a remote computer.
Fig 9. As Fig 8 but applied to a parking facility. —– It’s a parking facility with wires replaced by wireless connections.
Fig 10. Introduces a system that monitors and controls all of the applications of Figs 7 through 9, instead of a dedicated monitor / controller for each system. It also says that some of the hardware of co located applications may be shared. —– A network server may be in connection with several mobile phones each connected to a different computer through a BT connection acting as a modem, each of those computers may in turn be controlling a  Mars rover through the Deep Space Network while simultaneously communicating with a different server running World of Warcraft.  ———   On a more serious note, a system or computer receiving interrogation information from several air traffic control radars is monitoring several networks of transponders simultaneously. The basic technology has been around since WWII as can be seen for example from this 1965 issue of Popular Science; for obvious reasons it is wireless. Further as several radars can see the same transponders, several monitoring systems can receive information from the same radars (i.e. civil and military controllers) and the radars can belong to different networks (i.e. be part of networks in different countries) equipment reuse on several levels has also been around for some time.
Fig 11. Describes a message data structure with error indication. —–  See this document for a short description of how morse code messages are formatted. This book gives more general data structures for communication. A short introduction to error correction can be seen here.
Fig 12. Shows several examples of the message structure and explains how the devices can be pinged to check their and the networks health.  —–  Ping has been around since 1983. Almost any digital network requires a message structure to be able to route messages to correct destinations (IP).
Fig 13. Describes a data translator that converts signals in a legacy system to function codes. These codes can then be transmitted through transceiver(s) until they reach a WAN.  —– This is the same as attaching a wireless telemetry module to an existing wired network.
Fig 14. Describes how one of the sensor actuators having a transceiver may be integrated to a ship, plane, car etc. And how this unit can then be used to collect information.  —– Again the reader is encouraged to see Skylab Saturn IB Flight Manual for a description of how telemetry is used in rocketry. For a more recent system see patent 5,890,079.
 

Troglodyte: CleanTech 1

“This is really no different from saying ‘If my invention sees a problem, it solves it'”

The purpose of Project Troglodyte (ended in 2013) is to hunt for bad patents and to show what went wrong. 

TRANSMITTING POLLUTION INFORMATION OVER AN INTEGRATED NETWORK 

I’m starting my part of  Project Troglodyte with something that might be unwise if I lived in the USA: I will dissect a patent which I think has value for just one purpose: trolling (see EFF article for more on patent trolls). I’m not saying anything that would cause legal problems, but it’s still good to have an ocean between me and the patent.

The patent is in the area of cleantech, and in particular pollution monitoring, which is a subject close to my heart.  The case is particularly interesting because there are two connected patents: US7424527 (filed 2001, granted 2008) and its continuation US 7,739,378 (filed 2008, granted 2010).  Differences in the two show how the patent system has changed in the last decade, and not for the better.

The patents are owned by Sipco LLC. Is Sipco a patent troll? I prefer not to commit myself at this point, but will let the reader decide himself, based on several articles (SmartGridToday,  Green Patent Blog, CleanTech Blog). I have put Sipco on my list of companies to follow, but for this article I will only stick to these patents.

Figure 1: Schematic from the patent application

SECTION 1: SUMMARY

The 2008 patent basically claims the following invention: there are “pollution sensors” (whatever that means) that are connected by a wireless network to a monitoring site. When the pollution level gets too high, the sensors send a warning to the monitoring site. As far as I can determine, that’s basically it.

So what is the inventive step that makes the 2008 unique and worthy of a patent?

I don’t see one. It is difficult to be diplomatic about this particular patent: it has no real value, except for trolling purposes. (I also suspect the patent-filing system has been gamed; see Section 3 below for details). In the worst-case scenario, anyone sending pollution information via a wireless network may now need to pay Sipco royalties.

The original 2001 patent at least had a somewhat concrete application area: in principle, it was directly applicable to monitoring of pollution from industrial facilities, and helping operators make decisions when something unexpected happens. Even so, the “invention” was completely trivial even in 2001. It is somewhat astonishing that the patent was granted; in Section 3 I speculate on why this may have happened (though it is speculation only).

The 2008 patent, by contrast, is sort of applicable to the monitoring of some kind of pollution from something in order to perhaps do something. A pollution monitoring management controller is mentioned in Claim 13, but since it is a dependent claim, it can be dropped without really affecting the patent. The main claims are completely abstract.

But overall it is difficult to see much non-trolling value in the 2001 either. Just one example of its vagueness: on page 17, the patent describes what happens if one of the network elements stops working. “In such a situation, upon the detection of the failed transceiver or transceiver component, the pollution monitoring management controller 302 (Fig 3) redefines communication paths out to the transceivers, and transmits the redefined paths out to the transceivers, transceiver stations, transceiver units and site controllers such that the paths are redefined”. This is also the thing that is claimed in Claim 12. That’s all the information we’re given.

This is really no different from saying “If my invention sees a problem, it solves it”. One reason for the whole existence of the patent system is that it makes innovations public; the inventor has a monopoly on the use of his technology, but society has been given detailed information on how to build the invention. In this case, society has gotten zilch. Zilch on how to to build a robust system as claimed in Claim 12, and I’m afraid zilch on how to build anything in any of the other claims. And in the case of the 2008 patent, it’s somewhat vague what the “something” is that has been claimed to have been invented.

In fact, the benefit for society is less than zilch: it is negative. Now that the patents have been granted, the owner can (completely legally) use them to block any real progress in this area. If someone actually invests money and R&D into actually building a network like this, they will face the risk of litigation from the patent owner. And that risk will exist for the next 20 years, while the patents are valid. (In practice, the owner almost certainly has filed new continuation applications already, so the risk will continue infinitely).

This is unfortunately not paranoid speculation; as the articles show, this particular patent holder has shown no hesitation to sue. Cleantech companies can more or less expect future litigation from this direction.

SECTION 2: DAMAGE CONTROL

The damage has been done and the patents have been granted.  The best damage control, of course, would be for someone to try to invalidate the patents on the basis that there existed prior art in 2001 which made the patents trivial. However,  that is a cripplingly difficult and expensive process (see the EFF’s Patent Busting site).

Realistically, the only thing that could really be done is to design workarounds. These are extremely difficult due to the general nature of the patents. However, there may be a few weak points in the patents. It might be possible to find more if this were done professionally, but a volunteer project can only go so far.

Claim 1 (of both patents) requires that a message be generated “if a pollution level exceeding a predetermined threshold is detected”. In principle, if the detectors are polled at regular (or random) intervals, they would not infringe this patent. Thus this patent might have no effect on systems that monitor continuously. However, if the purpose is to warn of sudden rises in pollution, this is a problem.

One other workaround might be to use changing thresholds; several threshold values are stored in a central computer, and the pollution sensors get updated threshold values every now and then. (Note that this makes no practical sense whatsoever. But if the alternative is to spend years in litigation, it might be the less insane solution).

Claim 13 refers to a “pollution monitoring management controller”. Such a centralized controller is also evident in all the Figures. If the information management is completely distributed, so that there is no central controller facility, then the patent should be severely weakened. However, litigation is still probably possible.

[Addendum 13.8.2012 1405 UTC: A reader pointed to another way to circumvent this. Since the term “pollution” is not actually defined in the patent, one might work around the patent by steadfastly claiming that the sensors are not “pollution sensors”. Rather, they could for example simply be called “gas sensors” or just “detectors for determining the composition of the air”. Insane? Yes, but it might work. Please keep these ideas coming!] 

SECTION 3: TECHNICAL ANALYSIS: SYSTEM GAMING?

There is something interesting about the 2001 patent, which looks like a boring technical detail but may reveal a lot. On any patent document’s first page, there is a section called “References cited” which lists patents that are related to the subject area (either found by the inventor, or by the patent examiner). They are, in effect, proof that the inventor knows what other people have invented, but has invented something different. Typically there will be  20-30 such references.

On the 2001 patent, there are more than four pages of references, double columns, small text. More than 500 references. I don’t recall seeing anything like this. I am not even sure what it exactly means. Most of the references seem to have been made by the drafting patent attorney, with only a few added by the examiner.

I have no idea what actually happened during this seven-year-long patent process, but I will try to imagine a scenario.  Patent examiners work under serious time pressure (see for example Wolinsky 2010). I have heard a rumor that examiners have only two hours to process an application, but haven’t been able to find reliable references. Two hours is almost nothing, and if true, it really makes the system a lottery.

If I wanted to get a spurious patent through, I might submit an application with 500 references, without specifying at all how the references actually relate to the patent. That makes it look as if I have done serious research before filing, and makes it difficult for the examiner to reject it outright. There is no realistic way for the examiner to go through even a small part of the references, yet he has to make a judgment. It is basically spamming the examiner.

The 2008 patent has less than 100 cited references, but nine of these refer to USPTO decisions made in 2009 on other patents. I don’t have the competence to even speculate what exactly has been going on behind the scenes, but obviously something has.

The time from filing to granting of the 2008 patent was less than two years, which is very short (in comparison, it took seven years for the 2001 patent). Perhaps the process was speeded up by the fact that the 2008 patent is a continuation of the 2001 patent. Hence a lighter prior art examination was considered adequate. If so, this also points to a weakness in the system: once a spurious patent has been granted, it is easier to churn out new spurious patents based on the first one.

I wish I had less reason to feel cynical about this, but I don’t. Patents like this make me feel that my Trolling on the human rights essay is not dystopian at all. It is simply a description of our future.

 

Open monitoring: Can citizens be trusted?


Many citizens to distrust the authorities when it comes to monitoring pollution from industry.  Here is a reverse question that few ask but many should: why should the authorities place any more trust on the citizens?

Self-monitoring by industry is criticized, but is self-monitoring by citizens any more credible? I have been driving for “citizen monitoring” of pollution, and this question needs to be asked brutally.  Here is what I claim: if we require independence and transparency from the authorities, then we need to require it from ourselves also. I am thinking of some ways to make this possible.

At the grassroots level, I have been following the plans to build a new waste incinerator in Turku, fairly close to where I live. It is a heated local topic, which is no surprise. No sane person specifically WANTS to live next to an incinerator (personally, I am neutral about it, but then it’s not quite in my backyard even though it is close). This NIMBY effect is well documented everywhere.

What seems less well documented is the POSITIVE potential of people who live next door to these things. The people here have had decades of experience with the old incinerator, and they have local knowledge of both the surroundings and the incinerator itself. From persistent monitoring, they know what parts of the incineration process cause the worst emissions. They have followed the color of the snow and the water in closeby streams. They have made measurements of the pH levels in the emissions.  They know what environmental conditions cause the worst smells.

The authorities turn a blind eye to these results. And — I hate to put it this way — perhaps that is the right thing to do. Even if one fully trusts the people, the scattered measurements simply do not fulfill scientific criteria. Since they are not fully documented, it is impossible to audit the results for credibility.

To me, the fundamental problems lie with confirmation bias. Locals are likely to measure only when something has happened, for example there is a particularly bad smell. Few people think of photographing the color of the snow on days when there are no problems. Or to mark down days on which there are no smells. These citizen measurements certainly give an indication of what the situation is on the worst days, but they are not calibrated and do not give much of an indication about average conditions.

This is NOT conscious manipulation! It is a psychological necessity. On those days when things are fine, it is important to forget the problems. Constant worry is more likely to lead people to early graves than any pollution.

To face these problems, I have two suggestions, one trivial and one less trivial.

A. Trivial suggestion

The trivial suggestion is to automate everything as far as possible. However, even with improvements in technology, there are major limits to what can be done. Real air quality measurements, for example, are expensive and difficult to make accurately.

A suitable user interface for odor measurements? Picture: YLE / Karoliina Hult

In cases where an accurate measurement cannot be made, for example with smells, there could be clever ways to measure near-automatically. One solution I am thinking about is to use “like buttons” next to peoples’ front doors (see picture). The face corresponds to subjective air quality.  Pressing the correct button will take half a second. The process would very quickly become automatic. And once the process is automatic (nearly sub-conscious) it will start creating credible time series of odor levels. These can be correlated with micrometeorological weather data measured by a weather station in a neighbor’s yard.

B. Non-trivial suggestion

The second, less trivial suggestion is that the people doing the analysis should be more or less indifferent about the results. In other words, any analysis of the data needs to be done at a completely different location than the measurements, preferably so that there is no personal contact between the observers and the analysts. Emotions should not exist.

There is a clear precedent for this in the human rights arena: Amnesty International members generally do not work on human rights issues in their own countries. This improves the impartiality of the organization (and also the personal safety of the members).

In exactly the same way, citizen monitoring of industry should be scattered geographically, and there should be a firewall between the people who measure and the people who analyze. The firewall cannot be perfect in practice, as each location is different, and the locals are best aware of the things that should be measured. Locals thus need to be involved in setting up the measurement systems, and they of course need to do the actual measurements, but they should be cut off from the analysis.

This suggestion goes against human nature in just about every possible way. Locals should agree to be lackeys of someone else, and measure what is asked without knowing why? They should potentially pay for instruments without knowing what they are used for? And they should trust that someone “out there” knows and will do right? I personally cringe at the idea.

However, it could be doable. In Finland, analysis of the Turku incinerator could be done from Lappeenranta, which has a university that specializes in waste management — perhaps student labor could be used? And conversely, locals from Turku could help set up the measurements in Vaasa, since Turku locals have the most experience on incinerators (the old Turku incinerator was for many years the only one in the country). People here could absolutely have the competence to know what to measure.

I suspect that the psychological obstacles may be the biggest obstacle. Local observers are motivated to monitor local conditions, since it is their environment and their health that is at stake. If someone is already stressed and exhausted about the situation in Turku, why would he care about the situation in Vaasa?

And what about the money, the resources, the leadership, the responsibility? I have no idea. The technology is not the chokepoint (challenging though it is). Human and political issues are.

More on open monitoring: here.

Examiner of Silly Patents 3: Monkey thermometer

To take a break from all the gloom and doom of the last few week’s blogs, here is a different kind of look at patents. Very different.

Every now and then I will take a silly patent and pretend it isn’t silly. I will analyze and defend it in all faux-seriousness (see disclaimer at the end).  Usually I cannot defend it, but learn something in the process anyways.

From 1987, US 4,634,021 (Release mechanism) has a self-explanatory picture.

“A release mechanism is disclosed for releasing an object such as a ball from a body under the force of gravity. A bimetallic element obstructs or opens an opening in the body for retaining or releasing the object depending upon the temperature of the bimetallic element. The release mechanism may be incorporated into a novelty “brass monkey” for “emasculating” the monkey when the temperature decreases to a predetermined temperature at which the balls in the “brass monkey” are permitted to drop to a base which is designed to produce an audible sound when struck by the balls”.

I always try to give positive feedback and constructive criticism. In this particular case, the positive feedback is immediate and obvious. Anyone with the self-confidence to eternally attach his name to a drawing like this deserves our respect. Strength through goofiness.

On the constructive criticism side, there is more to be said. I believe that the inventor did not choose an optimal strategy to protect his excellent idea of using an emasculated monkey as a thermometer.

In my view, by patenting the inventor divulged too much information and gave the competition an unnecessary advantage. He opened his strategy, without really protecting it. Fundamentally, there seem to be too many workarounds around this patent.

For example, this patent most likely does not cover other animals. Castrating a donkey to tell the temperature would almost certainly be possible despite this patent. Using a human being would potentially lead to a court case. The arguments would revolve around whether a human being is biologically simian enough to be considered a special case of a monkey. I hesitate to speculate how that court case would end.

There are also non-testicular extensions of this idea which could have been pursued in the patent. In particular, something like a system with a French Revolution theme could present a similar user experience: when it gets cold, Marie Antoinette’s head is chopped off with a clang. This patent does not prevent such a user interface from being implemented.

There are also technical workarounds.  A bimetallic temperature valve is well-known. However, if the bimetallic valve were to be replaced by a sphincter-like structure, it is probable that the patent would not cover it.

What about the business case?  It is possible that this patent has indeed hit a niche which has not been extensively filled. I did not really find anything in the patent literature that would imply that this is a major technology area.

A Google search for “novelty thermometer” shows examples of today’s state of the art. I believe the figure below has some commonality in spirit with the patent. A rectal thermometer in a duck is used to measure bath water temperature. It is an unexpected combination.

Source: Screen capture.

I believe that a design patent to cover just the monkey implementation could have been more cost-effective.  Design patents are cheap to file and have no maintenance fees; on the other hand, they are only valid for 14 years against a utility patent’s 20 years. Alternatively, the inventor could have tried to broaden his patent significantly to cover other animals and user interfaces. That would, however, have raised the costs.

I strongly suspect that the inventor did not manage to make money from this patent. However, that does not in any way detract from the inventive step of this patent; one would not expect the see a thermometer implemented by using the clangs caused when a brass monkey is neutered and its testicles fall off.

Although an engineer type should never venture into aesthetics, I want to say something about artistic values. I find something poignant yet majestic about the figure of the monkey. This is almost worthy of a monument. If I had been the inventor — though I may be alone in feeling this — but if I had been the inventor, I think this figure would make an excellent gravestone. Why not? What could be a better memento for future generation to remember me by? Strength through goofiness is something to celebrate, throughout the generations.

All Examinations of Silly Patents: click here

Disclaimer: these analyses have very little to do with anything, and in particular have nothing to do with legal issues. Most of the patents cited are expired (or should be). I do not touch the “claims” section, which is the legally relevant part. These blogs constitute prior art, so that any new any ideas expressed here can no longer be patented.

Translate »