Ultra-low-tech lightning detection: business aspects

 

Part 2 of write-up on ultra-low-cost lightning detection network. See Part 1 for background.

[By Jakke Mäkelä and Niko Porjo]

This part summarizes the cost and business case estimates made for the project. The analysis suggests that an extremely low cost might be possible, making the solution suitable for use even in developing countries like Sri Lanka. However, we could not find a way to motivate anyone to fund the R&D part. Thus, we are not pursuing this further for the time being.

BUSINESS ASPECTS

Business case: both hardware cost and data transmission costs are kept so low that building and maintaining network is realistic to perform as a public service. Data transfer can be made over mobile phone network (SMS, GPRS, 3G…) or landline if available. Multiple operators are made to compete to keep data costs down. Hazard indication to end users will need to be wireless to achieve real-time warning.

Benefits

•An exact business case is difficult to determine, as it is for any lightning warning system.

•Situation in Sri Lanka: Tens of deaths reported annually, real number of deaths and injuries unknown. Commercial detection systems too expensive to maintain.

Costs

•Absolute worst-case scenario: If SMS sent less than once per min, reliability of network becomes poor. Thus cannot transfer much less than this. During storms, whole network would need to be transmitting 60*60=3600 SMS/hour. In Finland,  cost of SMS on one operator is ~5 cent, so cost would be 180 EUR/hr for whole network. Assuming 6 hours/ day of storms in active seasons, would mean 30 kEUR/month, which is of course completely unacceptable. But in practice, there are fixed-cost deals available from operators. Multiple operators are absolutely needed in order to maximize price competition and minimize risk of monopoly pricing. But there are SMS-based systems in existence which are affordable (for example Nokia Life Tools http://en.wikipedia.org/wiki/Nokia_Life_Tools) which means that costs could be kept reasonable if there is political push.

•Transfer rate over GPRS, if available, is even in extreme case ~160 B/min or 1kB/hour per station.  For total network, transfer is ~60 kB/hour. Per month, amounts to ~100 MB. On one Finnish operator, GPRS cost can be ~1.5 EUR/MB, so cost would be <200 EUR/month. Clearly GPRS would be the preferable channel where available.

Costs

•Sensors need to be stockpiled to allow them to be replaced quickly if needed, so at least 100 need to be built. Smaller calibration networks can also be developed in parallel and run in a suitable country.

•Main components are radio receiver, GPS clock, GSM/GPRS, processing unit. Battery may be most expensive individual component. ideally will run on AC power, but need to have backup battery/UPS capable of multi-hour operation in case of power failure.  Unit cost of 400EUR should definitely be reachable (cost of full network 40kEUR), though profit margin to manufacturer is then low. This part may need to be subsidized.

•Setting up of network is low-cost since all sensors are autonomous and operate by wireless network. Slow deployment is possible.

•Central unit can be a tabletop PC. Redundancy and power supply needs will increase cost significantly, but main algorithm is simple.

•Operating costs can be minimal if GPRS can be used.

•Cost of transmitting hazard information to users via Cell Broadcast is largest open question.

Funding and implementation

•No funding has been found.

•The organization Geoscientists Without Borders has been funding projects which are similar to the proposal: http://www.seg.org/web/foundation/programs/geoscientists-without-borders

•The target of the pilot is to improve local R&D competence in Sri Lanka, but kicking off the project could require an investment that is difficult to find locally. National foreign aid organizations (Finland or Sweden) might be approached for projects of this type, especially if some of the testing can be done in Europe (enhancing local knowledge also).

Similar projects

•Lots of small semi-official warning systems are known to exist, but limited info in public domain. Data transfer is almost always by fixed-line Internet, which can be unreliable especially in developing countries. Mobile wireless networks have better reliability (though not perfect).

FINAL OUTCOME

We continue to think that the idea would work in principle, but there is no real way to make it successful commercially. We need to feed our families, and cannot do it.

If someone is interested in making this a non-profit open-source project, the crucial documentation is already in the public domain and just needs to be collated together. There are some major engineering issues to be solved, but if profitability is not a requirement, they are likely to be solvable.

 

 

Concept for ultra-low-tech lightning detection

 

As a team, we have a historical trend of failing at everything we try. Common sense dictates that we should try to hide that fact. However, we’ve adopted the opposite strategy. Publishing our failures shows others how they should not proceed, and might give them ideas about how they should proceed (see The SMOS project). What’s in it for us? Not much. But it’s not a big effort to spend a few hours documenting things for the benefit of others.

[By Jakke Mäkelä and Niko Porjo]

This particular concept was a low-tech lightning detection system. Our former employer let us put some effort into looking at a system that could have used a cell phone’s radio circuits for remote lightning detection. The idea was more or less ridiculed, and it never did become commercial in the original form.

However, we found that the idea is less stupid than it sounds. I eventually did my PhD thesis on the physics of such systems. In brief: the crackle that lightning produces in any radio channel can be used to identify and range lightning, giving some pre-warning time before the thunder can be heard.

This is fairly pointless in Scandinavia, but could be significant in tropical areas with more frequent and violent thunderstorms. Both the hardware and software can be extremely simple — basically, an AM radio costing a few dollars can be used. This is thus a technique that might be feasible in developing countries.

We considered Sri Lanka to be a possible place to test the system. It has high mortality from lightning, and a poor economy and infrastructure. Thus, more expensive lightning detection systems do not sound highly realistic there. We also had connections with Sri Lanka during the project and my PhD studies.

Some other researchers and I wrote a peer-reviewed paper on how such a device could be used to detect lightning (Gulyas et al, JoLR 2012). We also wrote a non-peer-reviewed conference paper on how multiple sensors could be used to create a detection network. It’s one of those things that theoretically works. Making it work commercially is a completely different question.

Having been let go from our previous employers, we looked seriously into making this a commercial project. But we came to the conclusion that we would just starve.

The text below is mostly in the form we left it after deciding to stop. It is in draft form, as we do not feel like wasting our time on prettifying it after making a no-go decision. Technically oriented people will understand what we are saying. For readability, we have split the document into two parts; the technical document here, and a commercial document to be published later.

The various entities mentioned here (University of Uppsala, University of Colombo, and Finnish Meteorological Institute) were approached unofficially, but have not formally commented on the idea.

OVERALL PROPOSAL

A loose consortium between for example the University of Colombo, University of Uppsala, Finnish Meteorological Institute, and the proposers could contain all the competence that is needed to implement the project. As of 2012, a new lightning detection chip AS3935 is available from Austriamicrosystems which could form the detector part in the first generation. Thus, the hardware design would be particularly simple now (http://www.ams.com/eng/Lightning-Sensor/AS3935)

POSSIBLE PARTICIPANTS 

  • The University of Colombo has experience of the local conditions. Since the target is to transfer all the knowledge to Sri Lanka, Colombo should be the overall lead for the project, with other parties consulting per need.
  • The University of Uppsala has in-depth knowledge of lightning physics and a close working collaboration with Colombo.
  • The Finnish Meteorological Institute has a unit which is experienced with setting up weather-observation systems in developing countries.
  • Mäkelä and Porjo have experience with low-end detector design as well as the network technology.

PURPOSE

•Create an ultra-low-cost lightning detection and warning system for developing countries.

•Pilot project could be run e.g. in Sri Lanka.Technology tests need to be done in a country with accurate lightning location reference data (USA or Europe)

•Technology exists (and multiple technologies possible), missing is a low-cost system to bring the data together and disseminate it to end users. Specifically, low-cost real-time systems are missing.

•Focus is on extreme simplicity, capability to withstand power cuts, quick response times.

•Modular and technology-agnostic (no technology lock-in). Only requirement is that each station be able to provide a distance estimate when a flash is detected.

•Open-source project, with possibility to incorporate better techniques as technology improves.

•Simplest detectors can be built based on public-domain information. Local Sri Lankan R&D can be used to design and build the sensors.

•In the somewhat harsh conditions, it is realistic to assume that some of the measuring sensors will be malfunctioning or offline at any given time. Network algorithm must be made flexible to account for this.

Proposal for demonstrator

•Build network that covers the western coastal region of Sri Lanka.

•Build detection network on principles described in Porjo & Mäkelä 2010. As of 2012, the AS3935 chip from Austriamicrosystems (about 4 USD) is available as a front-end. This information is in the public domain. Simple detectors are also well-known and in the public domain. Some original design work may be needed, but could be done at University of Colombo (academic work). Lowest-cost approach could include a stock Android phone with a Rasberry pi attached to a GPS clock source and a small custom board for the AS3935.

•Sensors by default transmit flash information via mobile phone link (SMS or GPRS). Landlines (Internet access) can be used if available, but they can be expected to be more vulnerable to errors than wireless especially when storms are nearby.

•Flash-by-flash locations are not attempted, only storm risk zones (Gulyas et al 2012). Intra-cloud flashes are difficult to range in any case, and from the viewpoint of security, the most important parameter are the boundaries of the active storm cells.

•Central computer identifies storm risk areas. Sri Lankan Met Institute? Must plan system with high redundancy from the very beginning (at least two computers running separately) because probability of failure is highest exactly when the storms are strongest. The duplicate(s) can also be used to beta test networks whenever stations change.

•Mobile base stations within the risk areas send warning SMS to participating cell phones. GSM standard  allows this since a cell broadcast recommendation exists. But this is potentially difficult issue as requires operator cooperation, as well existence of the GSM network which may be unreliable. Negotiation with operators is needed, and in particular operator lock-in must be avoided (in which an operator can define his own price at will). Note that in principle it is NOT necessary to alert 100% of the people in the area, as it can be expected that people will alert each other. However, 100% should be a target.

•Since ranging accuracy drops radically after 20 km, stations cannot be separated by much more than this. For redundancy reasons, stations every 10 km might be better. In case of Sri Lanka, region of main interest is the coastal strip, thus the network could consist of approx three rows of sensors separated by ~20 km, sensors every 10 km or so.  To protect 200 km strip of coast, need minimum 3×20=60 sensors.

Data transfer needs

•Data transfer needs to be divided among multiple operators to avoid collapse if one operator’s SMS center crashes. Ideally each sensor would have at least two SIM’s (dual-SIM technology already exists) in case one crashes.

•Data transfer from sensors is to be by SMS or GPRS. Since locations of stations is known, only need per flash time (to 1-sec GPS accuracy) and intensity (8 bits would be sufficient if calibration is OK). Since we want to allow possibility of direction-finding at least in the future,  8 bits allows 1.4% angular resolution. Time can highly compressed if for example nearest hour is assumed to be known, in which case 12 bits is enough to code nearest second. Some kind of reliability value of a few bits would also be useful. → Each flash could be coded in 32 bits.

•SMS spec has 1120 bits per message (160 7-bit characters as in SMS, equivalent to 140 8-bit characters as in Twitter).  Thus up to 35 flashes could be coded in a single SMS. Since flash rates are essentially never 30 flashes/minute (in extreme cases ground flashes up to 4-6 flashes/min, cloud flashes theoretically 10 times higher). Sending SMS once per minute would be sufficient even in case of an extreme storm.

Part 2 on business aspects: click here 

 

 

Biochar 1: Background

 

“Biochar is not the miracle cure-for-all that some advocates claim. However, we still consider it a critical technology to be researched for poor countries.

Authors: Jakke Mäkelä, Kalle Pietilä, and Viv Collins. [Originally published in www.project-troglodyte.org

The production of biochar is being advertised as one of the most important low-cost high-impact technologies. See, for example, Open Source Ecology. The premise is relatively simple: biomaterial such as wood (or, ideally, wood waste) is heated in a kiln which does not let in oxygen.

The wood then breaks down into three components, with ratios depending on the temperature: charcoal, oils, and volatile gases. The gases can be fed into the heater, meaning that the process can keep itself running once it has been started. The oils can be used as clean fuel sources. Overall, the process can thus enable far more energy production than is needed to run it.

Most of the carbon is thus sequestered into the charcoal, with little carbon dioxide emitted. The CO2 that was taken up by the plants is thus fixed in the charcoal, which can for example be buried, never releasing the CO2 into the atmosphere. This can thus be a low-tech solution for carbon sequestration.

The “bio” part of the term comes from the possibility of combining the charcoal with nitrogen-based fertilizers, resulting in a very effective yet stable fertilizer. The theory is that the charcoal binds the fertilizer, preventing it from being leached too quickly by rain. This benefit has so far not been proven adequately, but at worst the charcoal should be a neutral element in the soil even if it does not give additional benefit.

We are doubtful of some of the most wide-eyed claims being made about it, and there are very strong skeptics of the process, especially at larger scales (see e.g. Climate Justice Now). The downsides are fairly obvious: the charcoal production will release particulate pollutants as well as possibly other toxins, unless it is done very efficiently. Also, at extremely large volumes the process would stop making ecological sense, as large plantations would have to be grown just for this purpose. At some size scale, the process would become ecologically completely counterproductive.

However, at smaller size scales the technology could have local health benefits, by providing a cleaner-burning fuel. The burning of unclean wood products in poorly designed kilns produces high indoor pollution levels and can be a health risk (FAO; this article however considers better stove design to be the key, and remains neutral about any relative health benefits given by charcoal).  Others (World Bank) consider that moving to cleaner and inexpensive charcoal would have clear health benefits.

Biochar is not the miracle cure-for-all that some advocates claim. However, we still consider it a critical technology to be researched for poor countries.  Whatever the actual value of the technology is, it would be pointless to allow spurious IPR to slow the progress.


Figure 1. Basics of biochar. Source: http://www.biochar-international.org/technology

Technology

The EFA article above describes a combination of a kiln that carbonizes agricultural waste into biochar, and an energy efficient briquetting machine that makes charcoal briquettes that can burn in ordinary stoves. Some of the biochar is used to make fertilizer and some to make briquettes.

For more on biochar, see International Biochar Initiative.  The current state of the art is described in the IBI production web page. The size scales can vary by a huge amount, from industrial-scale installations producing 1 ton per hour to small installations producing 500 kg a day or less.

The technology is described in the IBI technology web pages. The most critical general comment is this:  “But biochar technology is more than just the equipment needed to produce biochar. Biochar technology necessarily includes entire integrated systems that can contain various components that may or may not be part of any particular system.”

This is something to worry about. From the humanitarian IPR point of view, there is one crucial question: could spurious IPR be used to block development of large-scale biochar burning? In particular, could it block development of such technologies aimed at developing countries?

The IBI technology page mentions five specific goals for future R&D:

  1. Continuous feed pyrolyzers to improve energy efficiency and reduce pollution emissions associated with batch kilns.
  2. Exothermic operation without air infiltration to improve energy efficiency and biochar yields.
  3. Recovery of co-products to reduce pollution emissions and improve process economics.
  4. Control of operating conditions to improve biochar properties and allow changes in co-product yields.
  5. Feedstock flexibility allowing both woody and herbaceous biomass (like crop residues or grasses) to be converted to biochar.

It is #4 that we should be most worried about. There should be easy work-arounds and multiple technologies for the other areas (in which patents can be found just by searching for “biochar”). It is in practice not possible to block the development of new kiln types because alternative designs can always be used. A single troll patent for #4 could, however, stop the whole system. We will be analyzing this area in future postings.

 

What is humanitarian IPR?

 

While looking for a new career path, I am finding that the term “humanitarian IPR” resonates. Why? In part because it is useful to look at things no one else is looking at (Blue Ocean strategy).  In part because it would be nice to apply whatever skills I might have in IPR and innovation to something socially meaningful for a change.

A definition is needed. For lack of a better guideline, I consider the UN Declaration of Human Rights to define the limits of what is acceptable. Any patent that could severely infringe on these rights, especially in the case of highly vulnerable people, would be “humanitarian IPR”.  The term as I use it is in principle value-neutral. Humanitarian IPR can be abused, or it can be used benevolently.

But there the simple part ends.  It is extremely difficult to define what “infringe” means in practice. One really needs to look at the purpose of a patent rather than just its content, which is terrifyingly difficult or impossible.

Should humanitarian IPR be put into a category of its own? Intellectual property is already divided into at least two major segments: patents and copyright. Inventions and works of creative art are so different that it makes no sense to apply the same rules to them. (In this context, it doesn’t matter whether one finds copyright ridiculous or not. They are different, and need different rules). Many countries also have various kinds of petty patents, innovation patents, design patents, and so on the cover cases which do not need the full utility patent arsenal.

A full revamp of the IPR system is probably what is needed, but if that cannot be realistically achieved, could it at least be possible to carve out niches for which the rules are different? Something like this has been hinted by Richard Posner in a blog posting. Most interesting quote:“Although there are some industry-specific differences in patent law, for the most part patents are “one size fits all,” so far as length of protection and criteria and procedures for the grant of a patent are concerned. In contrast, copyright protection tends to vary considerably across different media.”

The huge advantage of a separate niche

Having a well-defined niche for humanitarian IPR could allow new types of funding modes specific for that segment. The Nobelist Joseph Stiglitz has written an article “Prizes, not Patents”, proposing“a medical prize fund that would reward those who discover cures and vaccines. Since governments already pay the cost of much drug research directly or indirectly, through prescription benefits, they could finance the prize fund, which would award the biggest prizes for developers of treatments or preventions for costly diseases affecting hundreds of millions of people.”

Furthermore,“Especially when it comes to diseases in developing countries, it would make sense for some of the prize money to come from foreign assistance budgets, as few contributions could do more to improve the quality of life, and even productivity, than attacking the debilitating diseases that are so prevalent in many developing countries. A scientific panel could establish a set of priorities by assessing the number of people affected and the impact on mortality, morbidity, and productivity. Once the discovery is made, it would be licensed.”

I will later be analyzing cases in which this kind of a system could be useful. A large one-off prize to the patent owner, in exchange for placing the patent in the public domain, could end a lot of the difficulties in one blow.

Reality check

There are two problems here. The first one is acerbically discussed in  “The Case Against Patents” by Boldrin and Levine (summarized in The Atlantic). Whenever there are holes in the patent laws, large companies and their lawyers will gravitate toward those holes. Litigation will change, but its amount will not.

For the humanitarian IPR problem, the hole would be in defining what is humanitarian and what is not, with large players hopping across the boundary in whatever direction best suits them. But even this could be better than the present situation, in which there are no restraints on what can be patented.

Perhaps even more seriously, I see a psychological issue that makes Stiglitz’s argument less convincing. If development aid money is used to give prizes to Western companies rather than developing countries, what kind of psychological effect will that have on the donors? Will they be even less willing to donate the 0.7% of GDP that is now a target but almost never reached?

Or, would a selfish interest (supporting local R&D) actually make them more willing to donate? It could go either way.

There are more open questions than answers in this area. That is why it would be a worthwhile subject to pursue.

 

Translate »